
IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Monitoring smartphone users'
security behaviour

Author:
Rini Banerjee

Supervisor:
Dr Soteris Demetriou

Written as part of the Undergraduate Research Opportunities Program (UROP) at
Imperial College London.

August 2019

Table of Contents

Acknowledgments

I would like to thank my UROP supervisor, Dr Soteris Demetriou, for providing me
with this opportunity and taking the time to guide me through this research place-
ment. I am also very grateful to the Department of Computing at Imperial College
London for providing me with the resources that allowed me to do this placement.

i

Contents

1 Introduction 2
1.1 Applications of this research . 3

1.1.1 Workplace security . 3
1.1.2 Healthcare . 4
1.1.3 Education . 4

2 Background 5
2.1 Android Components . 5

2.1.1 Activities . 5
2.1.2 Broadcast Receivers . 6
2.1.3 Handlers . 6
2.1.4 Listeners . 6

2.2 Interaction between components . 9
2.3 Permissions . 10

3 Design Overview 15
3.1 Main Activity UI . 16
3.2 Technical configuration milestones 17

3.2.1 Problem 1.1: Advertising ID 17
3.2.2 Problem 1.2: Bluetooth . 17
3.2.3 Problem 1.3: Password . 18
3.2.4 Problem 1.4: Phone covering 18
3.2.5 Problem 1.5: Adblocker . 20
3.2.6 Problem 1.6: Antivirus . 22
3.2.7 Problem 1.7: VPN . 22
3.2.8 Problem 1.8: WiFi . 23

3.3 Social configuration milestones . 23
3.3.1 Problem 2.1: Finance/Shopping 23
3.3.2 Problem 2.2: Developer name 24
3.3.3 Problem 2.3: Store name . 24
3.3.4 Problem 2.4: Text verification 24
3.3.5 Problem 2.5: Suspicious online communications 24
3.3.6 Problem 2.6: Pop-ups . 25

ii

CONTENTS CONTENTS

4 Testing and Evaluation 26
4.1 Simple repeated testing . 26

4.1.1 Methodology . 26
4.1.2 Results . 27

4.2 Other types of testing . 27
4.2.1 Adblocking, antivirus, finance and shopping apps 27
4.2.2 Problem 1.4: Phone covering 28

4.3 Evaluation . 28

5 Conclusion 30

1

Chapter 1

Introduction

It is estimated that nearly three-quarters of the worlds adult population now owns
a smartphone [16]. Although smartphone technology has made the world more
connected than ever before, it has also led to increased cybersecurity threats from
adversaries who are able to exploit the vulnerabilities of these systems. Despite
smartphone system developers' best efforts to keep their products equipped with se-
curity features, a lot of these features rely solely on the user's decisions. This in
itself poses a serious danger to the security of these devices (and, ultimately, their
users), since previous research suggests that users typically make minimal attempts
to protect smartphone security [17]. It is, therefore, critical to understand human
behaviour when it comes to keeping smartphones secure.

Previous research conducted in collaboration with the University of Illinois at Urbana-
Champaign suggests that there is a correlation between certain smartphone security
behaviours and mental health issues [18]. The main purpose of this research was to
develop a standardised scale for measuring users' smartphone security behaviours,
much like the well-established computer Security Behaviour Intentions Scale (SeBIS)
[19], developed by Egelman et al. This research led to the creation of the Smart-
phone Security Behavior Scale (SSBS), the finalised version of which is shown on
the next page in Table 1.1.

My task was to create an Android application that could be used in the real world
to track the security behaviours described in the SSBS. Using this app for field stud-
ies could improve the accuracy of the correlation between smartphone security be-
haviours and mental health, since field studies typically provide more accurate, real-
world data points than user studies. The latter tends to suffer from issues, such
as the potentially large difference between self-reported behaviours and actual be-
haviours, and so conducting a field study will provide more objective evidence to
strengthen the research claims.

I was provided with a Google Pixel 2 XL, running Android 8.1.0 ('Oreo') and API 27,
to help me work on this app during my research placement.

2

Chapter 1. Introduction 1.1. APPLICATIONS OF THIS RESEARCH

I reset my Advertising ID on my smartphone.
I hide device in my smartphone's Bluetooth settings.
I change my passcode/PIN for my smartphone's screen lock at a regular basis.
I manually cover my smartphone's screen when using it in
the public area (e.g., bus or subway).
I use an adblocker on my smartphone.
I use an anti-virus app.
I use a Virtual Private Network (VPN) app while connected to a public network.
I turn off WiFi on my smartphone when not actively using it.
I care about the source of the app when performing financial
and/or shopping tasks on that app.
When downloading an app, I check that the app is from the official/expected source.
Before downloading a smartphone app, I ensure the download is from official
application stores (e.g. Apple App Store, Google Play, Amazon Appstore).
I verify the recipient/sender before sharing text messages or other
information using smartphone apps.
I delete any online communications (i.e., texts, emails, social media posts)
that look suspicious.
I pay attention to the pop-ups on my smartphone when connecting
it to another device (e.g. laptop, desktop).

Table 1.1: Finalised version of SSBS

1.1 Applications of this research

1.1.1 Workplace security

Whether organisations provide their employees with 'work phones', or people use
their personal smartphones at work, smartphones have become embedded into al-
most every workplace. The ever-increasing ubiquity of smartphones comes at a price,
however, and organisations are particularly susceptible to cybersecurity threats - it is
estimated that worldwide cybercrime costs the global economy $600bn a year [21].

Researching the correlation between users' smartphone security behaviours and their
mental health conditions could improve workplace security, since being aware of em-
ployees' mental health conditions could help employers to predict which employees
are inclined to use the security features on their smartphones in ways that breach
their company's security protocol. It is hoped that this research will not only save
organisations a significant amount of time, money and resources, but will also im-
prove smartphone security in such workplaces, thereby improving the efficiency and
security of these workplaces as a whole.

3

1.1. APPLICATIONS OF THIS RESEARCH Chapter 1. Introduction

1.1.2 Healthcare

As technology continues to advance, its role in healthcare is becoming increasingly
apparent. There were 40,596 apps in the Health category of the Google Play Store
in the second quarter of 2019, and this number looks likely to increase over the
next few years [23]. Clinicians who are interested in using health apps for the
treatment of their patients may use this app for determining what kind of mental
health condition their patient might be suffering from, depending on which security
behaviours they exhibit.

1.1.3 Education

Technology is also proving to be an extremely useful tool when it comes to educa-
tion. Not only do most children and teachers now have a smartphone of their own,
but tablets are also being used extensively in classrooms across the world - in 2017,
over 1.2 million schoolchildren were using iPads in school [22]. Unfortunately, hav-
ing young children fully embrace mobile devices as part of their daily lives can come
with big security risks, as they are particularly susceptible to cyberthreats (e.g., cy-
berbullying, stalking). This app can be used to assess the level of vulnerability of
each child and teacher, and to improve the safety of school environments.

4

Chapter 2

Background

2.1 Android Components

Android applications have a very specific structure, and although my project was
done using Java, writing the code for the application was very different to writing a
Java program. For one thing, I came to realise that Android applications do not con-
tain a single entry point for execution (like the main() function in a Java program,
for example). Instead, developers are expected to design their applications in terms
of components. The following section is an overview of the components I used in
my application and the purpose of each component in my work.

2.1.1 Activities

In plain terms, an Android Activity is a single, focussed thing that the user can do
[2]. Activities define the app's user interface (UI), and typically, there is one activity
per 'screen' of the app [20]. Activities are implemented by extending the inbuilt
Activity class, and every app has a MainActivity, which is an Activity that relates to
the first screen the user sees when launching the app.

Figure 2.1: A flow diagram showing how Android Activities work.

5

2.1. ANDROID COMPONENTS Chapter 2. Background

2.1.2 Broadcast Receivers

To understand Broadcast Receivers, we must first look into Android Broadcasts,
which are messages that are sent from the Android system and other Android apps
whenever an event of interest occurs. These relate to the publish-subscribe design
pattern [4] (a form of asynchronous service-to-service communication, where any
message published to a topic is immediately received by all subscribers to the topic
[1]). Apps can register to receive particular broadcasts so that system changes can
be detected in real time.

In order to respond to broadcast messages from the system within our app, we need
Broadcast Receivers. Broadcast Receivers are, essentially, mailboxes for broadcast
messages [3], so whenever Broadcasts relating to a particular system event are sent
to some implicit destination, Broadcast Receivers for that event will subscribe to that
destination. One very useful property of Broadcast Receivers is that they continue to
receive Broadcasts even when the app they have been registered in is not running.
Broadcast Receivers are implemented by extending the BroadcastReceiver class.

For a complete list of Android system broadcast actions (as of API 28), please see
Figures 2.2 and 2.3 on the following two pages.

2.1.3 Handlers

A Handler is an Android component which allows communication between a back-
ground thread and the main UI thread [24]. A Handler takes a Java Runnable object,
and allows the same task to be scheduled or repeated at a given time interval. Han-
dlers are particularly useful when there are no inbuilt Broadcast Receivers to listen
for the variables we want to track, as they can poll the main UI thread at regular
time intervals to check whether a variable is changing. The concurrent nature of
Handlers makes them ideal for background processing, since potentially slow run-
ning operations in the Android app can be performed asynchronously; this improves
the overall user experience[25].

2.1.4 Listeners

An Event Listener is an interface in the Android View class that is used to listen for
changes the user had invoked in the UI (for example, an onClickListener could be
used to detect whenever the user clicks on a specific button) [13]. Listeners contain
a single call-back method, and the methods of a Listener are called when the user
interacts with the View object that this particular Listener is registered to (where
View is the Android class that represents the building block for UI components and
is responsible for event handling [11]).

6

Chapter 2. Background 2.1. ANDROID COMPONENTS

Figure 2.2: List of Android Broadcasts (i)

7

2.1. ANDROID COMPONENTS Chapter 2. Background

Figure 2.3: List of Android Broadcasts (ii)

8

Chapter 2. Background 2.2. INTERACTION BETWEEN COMPONENTS

2.2 Interaction between components

Figure 2.4: System diagram showing Android components interacting with each other

The system diagram above shows how all of the aforementioned Android compo-
nents interact with each other in the app.

Broadcast Receivers listen for messages from the Android system to inform them
of any changes to the variable being tracked, and also send messages to the Main
Activity, specifying which tracking behaviours have changed so that this information
can be recorded.

Handlers communicate with the Main Activity in a slightly more complicated way
than Broadcast Receivers. Although Handlers do not receive messages from the
Android system automatically like Broadcast Receivers, the Main Activity can save
the last known state of the variable being tracked and then pass it into the Handler
(which takes a Java Runnable object and creates a new thread). The Handler can
check whether this variable has changed by polling the Android system at regular
time intervals and comparing the new value with the stored one. If anything has
changed, the Handler simply sends a message back to the Main Activity so that this
information can be recorded. There is one Handler in my app, which deals with all
of the Handler-based tracking, and it polls the system every minute after it has been
started.

9

2.3. PERMISSIONS Chapter 2. Background

Figure 2.5: How I used Handler in my app

Listeners rely on user input, and in this app, they relay information back to Main
Activity, just like Broadcast Receivers and Handlers.

The Main Activity takes input from the user on what behaviours they want the app
to track, and then starts the relevant Broadcast Receivers, Handlers and Listeners
needed to track these particular behaviours. The red arrows in the system diagram
indicate indirect communication from the user to Broadcast Receivers, Handlers and
Listeners, since the user needs to go through the Main Activity to start these tracking
mechanisms.

2.3 Permissions

The Android security architecture has been designed in a way such that no app, by
default, is allowed to perform operations that would have a negative effect on other
apps, the operating system, or the user [10]. Android permissions were made to
support this design - their purpose is to protect the user's privacy. These permissions
can be divided into three broad categories: normal permissions, signature permis-
sions and dangerous permissions.

10

Chapter 2. Background 2.3. PERMISSIONS

A normal permission is one which does not pose much risk to the user's privacy or
the device's operation. If that permission is listed in the Android manifest file, the
system automatically grants the permission to the app, and the user is not consulted.

Next, a signature permission is one that the system grants at install time, but only
if the app requesting the permission is signed by the same certificate as the app that
defines the permission.

Finally, a dangerous permission covers areas that could potentially affect the user's
privacy or the device's normal operation. In this case, the user must explicitly agree
to grant such a permission for the app to be able to provide functionality that de-
pends on the permission.

Lists of each type of permission present in Android (as of API 28) are given below
(Figures 2.6, 2.7 and 2.8). All permissions that this app requires are provided in the
manifest file (AndroidManifest.xml).

11

2.3. PERMISSIONS Chapter 2. Background

Figure 2.6: Normal permissions

12

Chapter 2. Background 2.3. PERMISSIONS

Figure 2.7: Signature permissions

13

2.3. PERMISSIONS Chapter 2. Background

Figure 2.8: Dangerous permissions

14

Chapter 3

Design Overview

I was given a set of milestones to complete for my app. All of the milestones involved
tracking smartphone security behaviours. These are based on the SSBS behaviours
mentioned in Table 1.1 of the Introduction section. The security behaviours were
divided into two groups: technical configuration actions and social configuration
actions.

The technical configuration milestones were as follows:

1.1 Track changes in the configuration of Advertising ID

1.2 Track changes in the configuration of hide device in Bluetooth settings

1.3 Track changes of passcode/PIN for the smartphone's screen lock

1.4 Detect if the user physically/manually covers their smartphone's screen when
in public spaces

1.5 Detect if the user uses adblocker(s)

1.6 Detect if the user uses anti-virus app(s)

1.7 Detect if the user uses VPN app(s) when connected to a public network

1.8 Detect if the user turns off WiFi when not actively being used

Meanwhile, the social configuration milestones were as follows:

2.1 Track the source of the app when the user performs financial and/or shopping
tasks

2.2 Determine when downloading an app, if the user checks (or not) that the app
is from the official/expected source (e.g. developer name)

2.3 Determine when downloading an app, if the user checks the source of apps
(e.g. if they come from Google Play, Amazon App Store or other third party
stores)

15

3.1. MAIN ACTIVITY UI Chapter 3. Design Overview

2.4 Determine if the user verifies the recipient/sender before sharing text messages
or other information using smartphone apps

2.5 Determine if the user deletes any online communications (i.e., texts, emails,
social media posts) that look suspicious

2.6 Determine if the user pays attention to the pop-ups on her smartphone when
connecting it to another device (e.g. laptop, desktop)

3.1 Main Activity UI

Figure 3.1: Main Activity UI

16

Chapter 3. Design Overview 3.2. TECHNICAL CONFIGURATION MILESTONES

The user interface for this app's Main Activity is shown in Figure 3.1 above. The
user ticks checkboxes in the Main Activity to specify which behaviours they want the
app to track. They then click the ”Start” button to start tracking changes in these
behaviours, and click the ”Stop” button to stop tracking changes. In general, every
time a security behaviour that is being tracked changes, a message is written to a
local file in the app, which records the timestamp, a unique id depending on the type
of behaviour and a brief description of what has occurred. To read this file, the user
can click on the ”Read file” button. To understand the purpose of the ”Add trusted
place” button, please see the explanation for Problem 1.4 below.

3.2 Technical configuration milestones

In this section, I will provide details on how I implemented each technical configu-
ration milestone.

3.2.1 Problem 1.1: Advertising ID

Problem 1.1 requires the app to track changes in the device's Advertising ID, which
is a unique, user-resettable ID for advertising provided by Google Play Services [12].
This section relied on the Handler component.

My app uses an AdvertisingClient, as well as the getAdvertisingIdInfo() and
getId() methods from that class, to get the devices Advertising ID. When the Han-
dler is first started, the first-known value of the Advertising ID is written to the track-
ing file and saved into a variable called id. When the Handler next runs 1 minute
later, it checks whether the polled Advertising ID is different from the saved value in
id, and a message is written to the tracking file if this is the case. The Handler runs
every minute, and this process is repeated to track changes in the Advertising ID.

Since the getAdvertisingIdInfo() method is a blocking call method [12] (i.e., a
method that blocks the executing thread until the operation has finished [14]), it
cannot be called on the main (UI) thread. Therefore, I made an AdvertisingIdRunnable

class which starts a background thread to check for the Advertising ID, so as not to
interfere with the main thread.

3.2.2 Problem 1.2: Bluetooth

I used a Broadcast Receiver for Problem 1.2, which required the app to track changes
in the configuration of the hide device functionality in Bluetooth settings. How-
ever, in the newest versions of Android, I found that the device is always discov-
erable to other devices when connected to Bluetooth, so I adapted the milestone
to just check whenever Bluetooth was switched on or off. I created a class called
BluetoothBroadcastReceiver, which extends the BroadcastReceiver class, and I
overrided the onReceive() method to check whether the message being received

17

3.2. TECHNICAL CONFIGURATION MILESTONES Chapter 3. Design Overview

from the system (also known as the intent action) says that the Bluetooth state has
changed; in this case, the intent action to look out for would be BluetoothAdapter.

ACTION STATE CHANGED .

Additional information can be gathered about the intent action by calling the getIntExtra()
method and storing this extra value in an integer variable called state. state

could be one of four values: BluetoothAdapter.STATE OFF , BluetoothAdapter.
STATE TURNING OFF , BluetoothAdapter.STATE ON and BluetoothAdapter.STATE TURNING ON .
The value of the state variable determines what message is written to the tracking
file.

For this milestone, the app required two normal permissions: android.permission.BLUETOOTH
and android.permission.BLUETOOTH ADMIN.

3.2.3 Problem 1.3: Password

Problem 1.3 required the app to track changes in the device password. For this prob-
lem, I created a class called PasswordReceiver, which extended the class DeviceAdminReceiver
- this is a subclass of BroadcastReceiver and is part of the Android Device Admin-
istration API. The Device Administration API is designed to support enterprise apps
by providing device administration features at the system level [6]. I then sim-
ply overrided the inbuilt method onPasswordChanged() to write to the tracking file
whenever the phones password is changed.

For this problem, the protected permission android.permission.BIND DEVICE ADMIN

was required, as mentioned in the official documentation [7].

3.2.4 Problem 1.4: Phone covering

For Problem 1.4, which required checking whether physically covers their phone
screen when in public spaces, I needed to check for three things before writing a
message to the tracking file.

First, I checked whether the phone screen was being covered (by, for example, the
user's hand). In order to check this, I created a SensorEventListener (a type of
Listener) and overrided the onSensorChanged() method to detect when something
was close to the proximity sensor (which is normally located at the top of an Android
phone).

After checking whether the phone was being covered, the second condition I checked
was whether the user was using their phone. I did this by checking whether the
screen was unlocked. I created a method called isScreenLocked() and if the result
of this was false, I assumed the phone screen to be unlocked, implying that the user
was using their phone. In this case, I continued to check the third condition.

18

Chapter 3. Design Overview 3.2. TECHNICAL CONFIGURATION MILESTONES

The third and final condition to check is whether the user is in a public space. In
order to check this, I implemented geofences. Geofences are circular areas of a spec-
ified radius surrounding a location of interest, and they combine awareness of the
users current location and awareness of the users proximity to locations of interest
[5]. In my app, I used these to set up trusted places of 100m radius that the user
can input into the app, using the ”Add trusted place” button mentioned in the Main
Activity UI section. Clicking on this button leads the user to a screen (controlled by
an Activity called MapsActivity) which implements the Google Maps API. Here, the
user can either set the current location as a trusted place, or pick a point on the map
and add that as a trusted place. Whenever the smartphone is outside one of these
trusted places, the user is presumed to be in a public place.

Figure 3.2: Google Maps API in my app. Accessible from the ”Add trusted place” button
(see Main Activity UI section)

19

3.2. TECHNICAL CONFIGURATION MILESTONES Chapter 3. Design Overview

I extended the BroadcastReceiver class to make a new class called GeofenceBroadcastReceiver.
This checks for a GeofencingEvent, and gets the transition type if there is one.
It then checks whether the geofence transition was GEOFENCE TRANSITION DWELL

(meaning the user has been inside the radius of one of their trusted places for
some time) or GEOFENCE TRANSITION EXIT (which means the user has left a trusted
place). In the case of the latter, it now presumes the user is in a public place. At this
stage, the three conditions have been satisfied, and so a message is written to the
tracking file indicating that the phone is being covered while being used in a public
space.

For this problem, the normal permission android.hardware.sensor.proximity was
needed for the SensorEventListener to work. In addition, the dangerous permis-
sion android.permission.ACCESS FINE LOCATION was required for the app to access
the user’s current location, both when displaying this location on screen as part of
the Google Maps API, and also when checking where the user is in relation to any
geofences that have been set up. Since this is a dangerous permission, the user needs
to explicitly give their permission for the app to track their current location.

3.2.5 Problem 1.5: Adblocker

I implemented Problems 1.5 and 1.6 in extremely similar ways since the milestones
themselves are nearly identical. Therefore, I thought it would be best to discuss the
implementation of these milestones in one section, since they are so closely linked.

These two problems both rely on the Handler in my app, since, at the time of writing
this report, there are no Broadcast Receivers that receive messages from the system
whenever a particular app is running.

I decided to manually create two whitelists: one containing the package names of
the 'top' 15 adblocking apps on the Google Play Store, and one containing the 'top'
15 antivirus apps on the Google Play Store. To find the 'top' apps for each milestone,
I searched 'adblocker' into the store for Problem 1.5 and 'antivirus' for Problem 1.6;
I then took the first 15 results that appeared on the Google Play Store for these
searches and added them to the respective whitelist.

I wanted to create two new Java classes for the adblocking app and antivirus app
whitelists, and since I knew these two classes would be very similar, I decided to
make a Java Interface called Whitelist, which the two new classes would imple-
ment. This interface contains one method - getSet() - which returns the relevant
Java Set of package names. I decided to store the package names in a Java Set be-
cause I knew I would need to use its contains() method for these milestones, and
the time complexity of this method is O(1) [15].

For Problem 1.5, I created a class called AdBlockerWhitelist, which implements the
Whitelist interface. AdBlockerWhitelist includes a Java HashSet of Strings called

20

Chapter 3. Design Overview 3.2. TECHNICAL CONFIGURATION MILESTONES

adBlockerSet, and this contains the package names of the top 15 adblocking apps
on the Google Play Store. The class also overrides the Whitelist method getSet(),
and simply returns adBlockerSet when this method is called.

Similarly, for Problem 1.6, I created a class called AntivirusWhitelist, which also
implements the Whitelist interface. AntivirusWhitelist also includes a Java
HashSet of Strings, this time called antivirusSet, which contains the package
names of the top 15 antivirus apps on the Google Play Store. Once again, this class
also overrides the Whitelist method getSet(), and simply returns antivirusSet

when this method is called.

Figure 3.3: Relationship between Whitelist, AdBlockerWhitelist and
AntivirusWhitelist

For both problems, I needed a method which would check if any of the apps in the
relevant whitelist were running at a certain point in time. To get this information,
I created a method called isAppRunning(), which takes a Whitelist, goes through
the list of currently running app processes and checks if any of these processes are
part of the Whitelist. If there is a running process that is part of the whitelist,
then an adblocking/antivirus app has been found to be running on the phone, so the
package name of this app is returned. Otherwise, the empty string (“”) is returned.

21

3.2. TECHNICAL CONFIGURATION MILESTONES Chapter 3. Design Overview

Figure 3.4: isAppRunning() method

I then created two methods for my Handler so that Problems 1.5 and 1.6 could be
tracked effectively: adBlockerHandlerActivity() and antivirusHandlerActivity().
Both of these methods call the isAppRunning() method on the relevant whitelist,
and if the String returned from this method is non-empty, a message is written
to the tracking file stating that an adblocker/antivirus app is running. Once the
Handler has started, if the user has ticked the Adblocker checkbox in MainActivity,
adBlockerHandlerActivity() is called. Similarly, if the user has ticked the Antivirus
checkbox in MainActivity, antivirusHandlerActivity() is called.

3.2.6 Problem 1.6: Antivirus

See Problem 1.5 above.

3.2.7 Problem 1.7: VPN

Next, Problem 1.7 requires the app to detect if the user uses VPN app(s) when con-
nected to a public network. There are two layers to this problem: detecting whether
a VPN is running and checking if the device is connected to a public network.

For the first issue of checking whether a VPN is running, I created a method called
isVPNOn(), which goes through the list of open network connections and checks if
any of them starts with 'tun' (e.g., 'tun0', 'tun1'). This is checked because the Android
system automatically routes VPN connections to these 'tun'networks.

The app then checks whether the device is connected to a public network. First,
the app checks if the phone is connected to WiFi at all, using Androids WifiManager
class, and then it checks for two things: whether the WiFi has no password, and
whether the WiFi is a captive portal. If either of these are true, then the network is
presumed to be public. I created a method called isWifiNotPasswordProtected(),
which returns true if the current WiFi network is not a WEP, WPA or WPA2 network,
in which case the WiFi is presumed to not be password protected. I also created
a method called isCaptivePortal() to check whether the WiFi is a captive portal,

22

Chapter 3. Design Overview 3.3. SOCIAL CONFIGURATION MILESTONES

and it does so by checking if the currently active network has the network capability
NetworkCapabilities.NET CAPABILITY CAPTIVE PORTAL .

Therefore, if the WiFi is connected and either not password protected or a captive
portal, and if a VPN is running, a relevant message is written to the tracking file.

For this milestone, the app required three normal permissions: android.permission.
ACCESS NETWORK STATE, android.permission.ACCESS WIFI STATE and android.permission.

INTERNET. All of these permissions were needed to access information about the
WiFi.

3.2.8 Problem 1.8: WiFi

Problem 1.8 requires that the app detects if the user turns off WiFi when not ac-
tively being used. To check whether the internet is in use, I created a method called
checkForActiveConnections(), which checks if the list of TCP and TCP6 connec-
tions on the device is empty by reading the files /proc/net/tcp and /proc/net/tcp6.
If this list is empty, the device is presumed to not be actively using the internet. I then
created a class called WifiBroadcastReceiver to extend the BroadcastReceiver

class. This checks for the action WifiManager.WIFI STATE CHANGED ACTION , and
only if the state of the WiFi is WifiManager.WIFI STATE DISABLING (i.e., the WiFi
is in the process of switching off) does the app read the list of TCP and TCP6 con-
nections. If the WiFi is being switched off and the TCP and TCP6 connection list is
empty, a message is written to the tracking file indicating this.

Since this milestone also accesses information about the WiFi, it requires the same
three permissions as Problem 1.7 above: android.permission.ACCESS NETWORK STATE,
android.permission.ACCESS WIFI STATE and android.permission.INTERNET.

3.3 Social configuration milestones

In this section, I will provide details on how I implemented each social configuration
milestone.

3.3.1 Problem 2.1: Finance/Shopping

For Problem 2.1, the app was required to track the source of the app when the user
performs financial and shopping tasks. I implemented this in a very similar way to
the way I implemented adblocking and antivirus app milestones (Problems 1.5 and
1.6) – I created a new Whitelist called FinanceShoppingWhiteList and used the
isAppRunning() method once again (see Figure 3.4) to see if the current foreground
activity was one of the apps from this whitelist. However, in this case, instead of
manually adding the top 15 finance and shopping apps on the Google Play Store to
my whitelists, I was able to use a Google Play crawler created by George Hage. This

23

3.3. SOCIAL CONFIGURATION MILESTONES Chapter 3. Design Overview

provided me with the top 100 finance and shopping apps on the Google Play Store,
organised by number of reviews.

3.3.2 Problem 2.2: Developer name

For Problem 2.2, my task was to determine when downloading an app, if the user
checks that the app is from the official/expected source (e.g. developer name).
Unfortunately, I was not able to find any inbuilt methods that allowed me to access
the developer name of an app, so I was not able to complete this milestone.

3.3.3 Problem 2.3: Store name

My task for Problem 2.3 was to determine when downloading an app, if the user
checks the source of apps (e.g. if they come from Google Play, Amazon Appstore or
other third-party stores). Firstly, I created an AppInstallBroadcastReceiver (a sub-
class of BroadcastReceiver), which checks for the action Intent.ACTION PACKAGE ADDED

- this message is sent out by the system whenever an app is downloaded. I then used
PackageManager to determine which app store the app had been downloaded from
and saved this into a String called storeName.

I decided that the best way to find out if the user had checked the source of the apps
they were downloading was to ask them directly, using a small pop-up box on screen.
Therefore, inside the AppInstallBroadcastReceiver, once the Intent.ACTION PACKAGE ADDED

message has been received, an AlertDialog (a small window that asks the user to
make a decision or input some information [8]) is displayed on the app screen ask-
ing the user if they know which store they just downloaded this app from. They
can choose either 'Yes'or 'No', and if they pick 'Yes', they are asked to input the name
of the store they think it came from. If the user input matches with the value in
storeName, a message is written to the tracking file indicating that the user has
checked the source of the app they just downloaded.

3.3.4 Problem 2.4: Text verification

Due to the time constraints of my research placement, I was not able to complete
this milestone.

3.3.5 Problem 2.5: Suspicious online communications

Due to the time constraints of my research placement, I was not able to complete
this milestone.

24

Chapter 3. Design Overview 3.3. SOCIAL CONFIGURATION MILESTONES

3.3.6 Problem 2.6: Pop-ups

Due to the time constraints of my research placement, I was not able to complete
this milestone.

25

Chapter 4

Testing and Evaluation

When it came to testing and evaluating my project, I took a different approach for
each milestone. For some milestones, testing the milestone repeatedly was enough
to virtually guarantee its reliability, whereas for others, I needed to consider other
factors as well in order to assess whether my implementation of the milestone was
sufficient for the purposes of this research. I have outlined how I went about testing
each milestone below.

4.1 Simple repeated testing

I repeatedly tested some of the milestones to see how many times out of a total num-
ber of attempts the app was able to identify the target action for each milestone.

For each milestone, I decided to test the relevant action by printing a message to the
Logcat (a tool which allows the developer to see system messages [9]) if the appro-
priate change had occurred. I did this 50 times for each milestone. I have provided
details on the methodology I used to test each of the aforementioned milestones, as
well as a table of results (Table 4.1) for this stage of the testing, below.

4.1.1 Methodology

• Problem 1.1 - I manually reset the Advertising ID.

• Problem 1.2 - I switched Bluetooth on and off.

• Problem 1.3 - I changed the phone password.

• Problem 1.4 * - I moved my hand close to the phone's proximity sensor.

• Problem 1.7 - I ran a VPN while the phone was connected to a public captive
network.

• Problem 1.8 - I switched WiFi off.

• Problem 2.3 - I downloaded an app.

26

Chapter 4. Testing and Evaluation 4.2. OTHER TYPES OF TESTING

[* I only tested one part of this milestone using repeated testing.]

4.1.2 Results

Problem No. of times app tracked changes No. of times app did not track changes
1.1 50 0
1.2 50 0
1.3 50 0
1.4 50 0
1.7 50 0
1.8 50 0
2.3 50 0

Table 4.1: Table of results for repeated testing

4.2 Other types of testing

4.2.1 Adblocking, antivirus, finance and shopping apps

I implemented Problems 1.5, 1.6 and 2.1 in very similar ways (as discussed in Sec-
tion 3.2) and so I decided to test them in similar ways too. For Problem 1.5, I down-
loaded the 15 apps listed in AdBlockerWhiteList and tested each app 10 times to
see if my app detected that it was running. For Problem 1.6, I did the same thing
but downloaded the 15 apps listed in AntivirusWhiteList and tested each of these
apps 10 times too. For Problem 2.1, I downloaded the top 15 apps (out of 100)
for both Finance and Shopping categories (taken from FinanceShoppingWhitelist)
and tested each of these apps 10 times as well.

Unfortunately, after I started testing these milestones, I came to realise that the
method getRunningAppProcesses from ActivityManager (which my isAppRunning

method relies on heavily) has become severely restricted in the latest versions of
Android, and that it is now much more difficult to get information on apps run-
ning in the foreground and background. Therefore, instead of checking whether
the app is running, I check whether it is installed using a method I created called
isPackageInstalled (see Figure 4.1 below).

The testing results of the three milestones using isPackageInstalled rather than
isAppRunning are shown below.
[NB: The number of test results given above in Table 4.2 is the total: for each mile-
stone, the 15 apps were tested 10 times each, so 150 results are shown above]

27

4.3. EVALUATION Chapter 4. Testing and Evaluation

Figure 4.1: isPackageInstalled() method

Problem No. of times app tracked changes No. of times app did not track changes
1.5 150 0
1.6 150 0
2.1 150 0

Table 4.2: Table of results for Problems 1.5, 1.6 and 2.1

4.2.2 Problem 1.4: Phone covering

Although I tested the phone's proximity sensor for this problem using repeated test-
ing (as shown in Section 4.1 above), I did not test the geofences in this way. I was,
in fact, unable to test geofences very well, and this was as a result of a number of
factors. Firstly, the phone I was provided with did not have a SIM card, so it had
no access to mobile networks. In addition, the testing was done in a rural area, and
so there were very few public WiFi networks. Both of these factors meant that it
was very difficult to detect when the phone had left a geofenced trusted place, since
location accuracy is improved significantly when the device is connected to the in-
ternet. However, I was able to check that the geofences had been set up by printing
a message to the logcat when this was done, and I also believe that the Google Maps
API displays the correct current location when connected to WiFi, since I tested it in
3 public places with WiFi.

4.3 Evaluation

Overall, I believe the testing for this app was satisfactory. Nonetheless, I still think
were a few parts of my testing strategy that could be improved upon, such as the
following:

• The adblocker and antivirus whitelists (Problems 1.5 and 1.6) were found
manually and are only accurate as of July 2019. I hope that in the future, the

28

Chapter 4. Testing and Evaluation 4.3. EVALUATION

app could be updated to use data from a Google Play crawler (such as the one
used for Problem 2.1).

• In Problem 1.4, besides the issue of not having tested the geofences prop-
erly (as outlined above in Section 4.2.2), the phone–covering aspect of the
milestone is slightly ambiguous. For example, if the user decided to cover the
bottom half of the phone, the proximity sensor (which is located towards the
top of the phone) would not detect any changes.

• Not being able to use the isAppRunning() method for Problems 1.5, 1.6 and
2.1 was frustrating, since having any of these apps installed does not necessar-
ily imply that the user actively uses them.

• With regards to Problem 1.4, geofences are not the ideal way to measure
whether the user is in a public place. If the user does not register a location
that they trust as a 'trusted place' on their phone, the phone may incorrectly
assume they are in a public place when they are actually not (for example,
when visiting the homes of friends and family).

29

Chapter 5

Conclusion

This app has been created in order to strengthen the claim made by the University
of Urbana-Champaign that there is a correlation between certain smartphone secu-
rity behaviours and mental health issues. This claim was based on the self-reported
responses of 487 participants of an online survey [18]. By tracking these security be-
haviours in real-time, the app will be able to provide objective evidence about how
people use their smartphones in everyday life, thus avoiding the large differences
that typically arise when comparing self-reported behaviour and actual behaviour.

I hope that the use of this app in a future field study will help to further corrobo-
rate this claim, and that this research will not only lead to improved smartphone
security in real-world environments (such as the workplace, schools and healthcare
institutions), but also save these organisations a lot of time, money and effort in
their attempts to protect themselves from cybercrime and online adversaries.

30

Bibliography

[1] Amazon: What is pub/sub messaging? https://aws.amazon.com/

pub-sub-messaging/.

[2] Android developer guide: Activity. https://developer.android.com/

reference/android/app/Activity.

[3] Android developer guide: BroadcastReceiver. https://developer.android.

com/reference/android/content/BroadcastReceiver.

[4] Android developer guide: Broadcasts. https://developer.android.com/

guide/components/broadcasts.

[5] Android developer guide: Create and monitor geofences. https://developer.
android.com/training/location/geofencing.

[6] Android developer guide: Device administration overview. https://

developer.android.com/guide/topics/admin/device-admin.html.

[7] Android developer guide: DeviceAdminReceiver. https://developer.

android.com/reference/android/app/admin/DeviceAdminReceiver.

[8] Android developer guide: Dialogs. https://developer.android.com/guide/

topics/ui/dialogs.

[9] Android developer guide: Logcat command-line tool. https://developer.

android.com/studio/command-line/logcat.

[10] Android developer guide: Permissions. https://developer.android.com/

guide/topics/permissions/overview.

[11] Android developer guide: View. https://developer.android.com/

reference/android/view/View.

[12] Android docs: Advertising ID. http://www.androiddocs.com/google/

play-services/id.html.

[13] Android event handling. https://www.tutorialspoint.com/android/

android_event_handling.htm.

31

https://aws.amazon.com/pub-sub-messaging/
https://aws.amazon.com/pub-sub-messaging/
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/content/BroadcastReceiver
https://developer.android.com/reference/android/content/BroadcastReceiver
https://developer.android.com/guide/components/broadcasts
https://developer.android.com/guide/components/broadcasts
https://developer.android.com/training/location/geofencing
https://developer.android.com/training/location/geofencing
https://developer.android.com/guide/topics/admin/device-admin.html
https://developer.android.com/guide/topics/admin/device-admin.html
https://developer.android.com/reference/android/app/admin/DeviceAdminReceiver
https://developer.android.com/reference/android/app/admin/DeviceAdminReceiver
https://developer.android.com/guide/topics/ui/dialogs
https://developer.android.com/guide/topics/ui/dialogs
https://developer.android.com/studio/command-line/logcat
https://developer.android.com/studio/command-line/logcat
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/reference/android/view/View
https://developer.android.com/reference/android/view/View
http://www.androiddocs.com/google/play-services/id.html
http://www.androiddocs.com/google/play-services/id.html
https://www.tutorialspoint.com/android/android_event_handling.htm
https://www.tutorialspoint.com/android/android_event_handling.htm

BIBLIOGRAPHY BIBLIOGRAPHY

[14] What is blocking methods in java and how do deal with it?,
February 2017. https://javarevisited.blogspot.com/2012/02/

what-is-blocking-methods-in-java-and.html?m=1.

[15] Time complexity of Java collections, July 2019. https://www.baeldung.com/

java-collections-complexity.

[16] Anonymous. The maturing of the smartphone industry is cause for celebration.
The Economist, 2019. https://www.economist.com/leaders/2019/01/12/

the-maturing-of-the-smartphone-industry-is-cause-for-celebration.

[17] A. Das and H. U. Khan. Security behaviors of smartphone users. Information &
Computer Security, 24(1):116–134, 2016.

[18] S. Demetriou et al. Smartphone security behavioral scale: A new psychometric
measurement for smartphone security (unpublished).

[19] S. Egelman and E. Peer. Scaling the security wall: Developing a security behav-
ior intentions scale (sebis). In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems, pages 2873–2882. ACM, 2015.

[20] W. Enck, M. Ongtang, and P. McDaniel. Understanding android security. IEEE
security & privacy, 7(1):50–57, 2009.

[21] G. Gross. The cost of cybercrime, February 2018. https://www.

internetsociety.org/blog/2018/02/the-cost-of-cybercrime/.

[22] K. Meaney. Apple’s iPad is most popular tablet in schools, Au-
gust 2017. https://www.simbainformation.com/Content/Blog/2017/08/

07/Apples-iPad-is-Most-Popular-Tablet-in-Schools.

[23] M. Mikulic. Number of mHealth apps available at Google Play from 1st quar-
ter 2015 to 2nd quarter 2019, August 2019. https://www.statista.com/

statistics/779919/health-apps-available-google-play-worldwide/.

[24] A. Sinhal. Handler in android. Medium, January 2017.

[25] L. Vogel, 2017. https://www.vogella.com/tutorials/

AndroidBackgroundProcessing/article.html#why-using-concurrency.

32

https://javarevisited.blogspot.com/2012/02/what-is-blocking-methods-in-java-and.html?m=1
https://javarevisited.blogspot.com/2012/02/what-is-blocking-methods-in-java-and.html?m=1
https://www.baeldung.com/java-collections-complexity
https://www.baeldung.com/java-collections-complexity
https://www.economist.com/leaders/2019/01/12/the-maturing-of-the-smartphone-industry-is-cause-for-celebration
https://www.economist.com/leaders/2019/01/12/the-maturing-of-the-smartphone-industry-is-cause-for-celebration
https://www.internetsociety.org/blog/2018/02/the-cost-of-cybercrime/
https://www.internetsociety.org/blog/2018/02/the-cost-of-cybercrime/
https://www.simbainformation.com/Content/Blog/2017/08/07/Apples-iPad-is-Most-Popular-Tablet-in-Schools
https://www.simbainformation.com/Content/Blog/2017/08/07/Apples-iPad-is-Most-Popular-Tablet-in-Schools
https://www.statista.com/statistics/779919/health-apps-available-google-play-worldwide/
https://www.statista.com/statistics/779919/health-apps-available-google-play-worldwide/
https://www.vogella.com/tutorials/AndroidBackgroundProcessing/article.html#why-using-concurrency
https://www.vogella.com/tutorials/AndroidBackgroundProcessing/article.html#why-using-concurrency

	1 Introduction
	1.1 Applications of this research
	1.1.1 Workplace security
	1.1.2 Healthcare
	1.1.3 Education

	2 Background
	2.1 Android Components
	2.1.1 Activities
	2.1.2 Broadcast Receivers
	2.1.3 Handlers
	2.1.4 Listeners

	2.2 Interaction between components
	2.3 Permissions

	3 Design Overview
	3.1 Main Activity UI
	3.2 Technical configuration milestones
	3.2.1 Problem 1.1: Advertising ID
	3.2.2 Problem 1.2: Bluetooth
	3.2.3 Problem 1.3: Password
	3.2.4 Problem 1.4: Phone covering
	3.2.5 Problem 1.5: Adblocker
	3.2.6 Problem 1.6: Antivirus
	3.2.7 Problem 1.7: VPN
	3.2.8 Problem 1.8: WiFi

	3.3 Social configuration milestones
	3.3.1 Problem 2.1: Finance/Shopping
	3.3.2 Problem 2.2: Developer name
	3.3.3 Problem 2.3: Store name
	3.3.4 Problem 2.4: Text verification
	3.3.5 Problem 2.5: Suspicious online communications
	3.3.6 Problem 2.6: Pop-ups

	4 Testing and Evaluation
	4.1 Simple repeated testing
	4.1.1 Methodology
	4.1.2 Results

	4.2 Other types of testing
	4.2.1 Adblocking, antivirus, finance and shopping apps
	4.2.2 Problem 1.4: Phone covering

	4.3 Evaluation

	5 Conclusion

